
it is necessary to perform in the future further analysis of nonstationary conditions at the 

wall. 

NOTATION 

~, the wave function; y, radial distance from the tube axis; t, time; U, absolute value 
of the translational velocity; p, density (incompressible flow); c and b, wave amplitude and 
phase; ~, fluctuation frequency; R, tube radius; ~, shear stress; t0, shear stress at the 
wall; M, viscosity coefficient; h, a "quantum" parameter, related to the circulation of large 
vortices; I, hydraulic resistance coefficient; Re, Reynolds number. 
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MATHEMATICAL BOUNDARY-LAYER MODEL FOR A WIDE RANGE OF TURBULENT 

REYNOLDS NUMBERS 

V. G. Zubkov UDC 532.517.4 

Based on the e--s turbulence model, a boundary-layer system of equations is proposed, 
describing the laminar, transition, and turbulent flow regimes. 

Analysis of contemporary turbulence models [I] shows that the most promising models for 
describing turbulent transfer processes in boundary layers are those in which the fluctuating 
flow characteristics are determined as a result of simultaneous solution of the equations of 
turbulence intensity e and dissipation s. For the development of turbulent flows with rela- 
tively large turbulent Reynolds numbers (RT = e2/(~s) > IdS) models of thls" type have been 
developed in detail [2] having many practical applications. In describing flows with small 
R T e--s models were first used in [3]. In this case additional corrective terms and closure 
functions were introduced in the equations of turbulence intensity and dissipation, but justi- 
fying several of their assumptions seemed to raise doubts [I]. Thus, for example, introduc- 
tion of the additional term --2~(8~y) 2 in the right-hand side of the e equation, due to 
nonvanishing of dissipation at the wall, destroys the total balance and leads to lowering of 
the solution stability for increasing step sizes in the longitudinal direction. There is no 
physical justification for the further term in the dissipation equation 2MT~(82U/Sy2) 2, which 
seems to affect substantially the solution results in the direct neighborhood of the stream- 
line surface, where the gradients of the flow parameters are particularly significant. 

Despite the fact that by means of the Jones--Launder model [3] it seems possible to cal- 
culate several important special cases of boundary-layer flow, such as flow with acceleration, 
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the problem of creating universal e--s models is far from completion. The available models 
do not allow one to obtain stable boundary-layer solutions in the transition from the laminar 
to the turbulent flow regimes, and even in the case of calculating "laminarization" effects 
of accelerated flows their accuracy remains low. 

A method is suggested below of dissipation closure equations for the case of relatively 
small Reynolds numbers. All closure coefficients are determined as a result of processing 
experimental data, and to account for the flow features directly near the streamline surface 
one additional closure function is introduced into the dissipation equation. As a result of 
a numerical experiment it has been established that in this case the problem of assigning 
boundary conditions for the dissipation equation practically does not affect the results of 
calculating mean flow parameters. Unlike the Jones--Launder model, the suggested model is 
simpler and contains fewer closure relations. 

The Dissipation Equation. Due to the complexity of closure the dissipation equation 
has so far not been obtained in general form. For the cases of locally equilibrium turbulence 
or flow with relatively large turbulence Reynolds numbers [4] the expression for dissipation 
is substantially simplified, and the equation can be obtained from the Navier--Stokes equation 
[5]. The terms of the equation, containing velocity correlations of second and third orders, 
are expressed by dimensionality considerations and available experimental data in terms of 
some mean flow parameters, turbulence intensity, dissipation, and closure coefficients. For 
a two-dimensional stationary flow the dissipation equation is written in the form [2] 

a~ e t Og ] e 

The t u r b u l e n t  t r a n s f e r  c o e f f i c i e n t  ~T i s  d e f i n e d  by the  e q u a t i o n  

According to the first Kolmogorov hypothesis [6], the coefficients of Eq. (I) and ex- 
pression (2) for flows with relatively large RT are constant and are determined on the basis 
of experimental data, as was shown, for example, in [2]. Very near the streamline surface 
the local turbulent Reynolds number is small, and the viscous friction forces become commen- 
surate with the friction forces due to turbulent liquid motions. In this case the coeffi- 
cients in Eq. (I) and expression (2) are functions of the turbulent Reynolds number. 

The specific functional dependences for the closure coefficients Cz, C2, C~, and o E in 
the present study were obtained on the basis of processing experimental data on measurements 
of turbulence structure in tubes [7], boundary layers [8], boundary layers with positive pres- 
sure gradients [9], etc. The papers mentioned contain information on the profile distribu- 

! 

tions of the mean velocity U, the fluctuating velocity components ui, and the turbulent tan- 
gent stress <u'v'> as a function of the transverse coordinate y. Introducing these original 
data into the turbulence intensity equation, which is simplified by the assumption of small 
convective terms in comparison with the remaining ones 

d [ (v  <u'v') ) d_~y ]__<u,v,) dUdg dg dU/dy = e, (3) 

we obtain a system of equations in the unknown function c(y), selected in the form of a third- 
order polynomial s(y) = a + by + cy 2 + dy 3. As a result of solving the equations of this 
system by the least-squares method for each series of experiments the dissipation value is 
determined as a function of the coordinate y. Following that, the value of the coefficient 
Cp in Eq. (2) is calculated by the relation 

C~ = < u 'v ' )8  dU/dy.e ~ (4) 

As f o l l o w s  f rom the  da t a  p r e s e n t e d  in F ig .  1 ( p o i n t s ) ,  f o r  RT > 103 the  c o e f f i c i e n t  C~ can 
be assumed to  be a c o n s t a n t  q u a n t i t y ,  equal  to  0.09 wi th  an a c c u r a c y  of • With d e c r e a s i n g  
number R T one obse rves  a g r a d u a l  l ower i n g  of  the  c o e f f i c i e n t ,  which can be d e s c r i b e d  by the  
e x p o n e n t i a l  dependence 

125 
C ~ = 0 . 0 9 5 [ - - e x p ( - - 2 . 5 ) + e x p (  5 0 + R ~ ) ]  (5) 

(the curve in Fig. I). 
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Fig. I. The coefficient C M (5) as a function of turbulent Reynolds 
number R T = e2/(~e) (points are results of processing experimental 
data, as obtained in the present study, I) by the data of [7], Re = 
5.104; 2) [7], Re = 50.104; 3) [8]; 4) [9]; 5) [I0]). 

Fig. 2. Calculation of the dissipation profile by the suggested 
model near the wall for different boundary conditions for the dissi- 
pation e.10 -4, m2/sec 3 

By processing experimental data it has been established that for any turbulence Reynolds 
numbers the coefficients CI and ~ are constant quantities, equal, respectively, to 1.65 and 
1.3. The shape of the functional dependence of C2 is determined as a result of processing 
the experimental data of [10] and can be represented in the form 

C2:2[1 _0,3exp(_R~)l" (6) 

The data obtained for the closure coefficients were in total agreement with the results 
of [3]. However, the e--E model closed only by means of these coefficients does not make it 
poss~le to calculate the boundary layer parameters near the streamline surface. The pro- 
files of mean and fluctuating flow characteristics do not correspond in this case with the 
experimental data. Moreover, the calculation leads to negative values of the turbulence 
intensity and dissipation for y, < 3. The reason for the deviation is that the conditions 
of locally isotropic equilibrium, under which assumption Eq. (I) was derived, are violated 
in the boundary-layer regions, where the turbulent Reynolds numbers are small. It has not 
been possible to account for these variations in turbulence structure only by means of the 
suggested closure coefficients. 

The quantity E can be considered as the isotropic part of the total dissipation D. It 
has been established experimentally [11] that the total dissipation does not vanish at the 
wall. Account of this effect can be either assigned by corresponding boundary conditions 
for Eq. (I) at the wall [for y = 0 ~ = 2v(8~e-e/~y) 2 or 9s/~y = 0], or by introducing the addi- 
tional term--2~(~/~/~y) 2 in the right-hand side of the turbulence intensity equation, as was 
suggested in [3]. However, the use of nonvanishing boundary conditions for the ~ equation in 
the form (I) is impossible. For G w ~ u the last term of the dissipation equation C2p~2/e in 
the wall region loses its physical meaning (for y § 0 it tends to infinity, since e w = 0). 
The introduction of the same additional term in the turbulence intensity equation changes 
the e equation itself and affects the solution results; therefore it was suggested in [12] 
to avoid this method. In this case the dissipation equation itself is modified, in whose 
last term one introduces an additional function, restricting the extent of dissipation de- 
crease immediately near the wall; it is written in the form 

C2~[~--2v(~ K-7-/~gy]lr (7) 
while the boundary condition for e at the wall is written in the form ~e/~y = 0. Truly, a 
similar modification affects the solution results not only in the boundary-layer zone, but 
also in the external boundary-layer regions, where the turbulence intensity gradients can 
be large, particularly in the transition flow regimes. 

Despite the difference in shape between the turbulence intensity and dissipation equa- 
tions, the calculations of the U and e profiles by the models of [3] and [12] coincide, as 
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follows from the data provided in these studies. In this case, for correct description of the 
experimental e profiles in the boundary layer (y, ~ 15) it is necessary to introduce into the 
dissipation equation one additional correction term 2~TV(32U/~y2) 2, for which no physical 
justification is given. 

In the boundary-layer model suggested in the present study, the turbulence intensity and 
dissipation equations were included without introducing additional terms. To account for 
features of turbulent transfer in the boundary-layer flow region, where turbulence has an 
anisotropic nature, one introduces in the last term of Eq. (I) a correction function f. The 
purpose of introducing it is to restrict the growth of the dissipation degradation term near 
the wall. The variation region is from 0 to I. The specific shape of the function f is de- 
termined from the conditions guaranteeing best agreement of the mean velocity and turbulence 
intensity profiles with the experimental data [7-10]. The E profiles calculated in the pre- 
sent study and the experimental data from the studies mentioned on the U, u', v', w', <u'v'> 
profiles are substituted into the dissipation equation (the convective terms are also dis- 
carded) 

' ' V  

dy asdU / dy 

as a result of whose solution we find [(f=r ]: 

250 ) (9) 
f = -- exp (-- 10) q- exp 25 + y~ ' " 

The y~dependence of the function f was selected in such a manner that the dominant modifica- 
tion factor be the distance from the wall. We could not establish the dependence of f on R T 
due to the substantial spread of the data obtained as a result of processing the various ex- 
periments. 

To estimate the effect of boundary conditions for dissipation on the calculation re- 
sults concerning the suggested turbulence model we carried out a numerical experiment. It 
was established that for the selected shape of the turbulence intensity and dissipation equa- 
tions, as well as the closure relations, the shape of boundary conditions for ~ at the wall 
does not seem to affect the velocity and turbulence intensity profiles obtained by the cal- 
culation. For the sake of comparison Fig. 2 shows the dissipation profiles near the stream- 
line surface, calculated for the two boundary conditions ~w = 0 (curve I) and ~w = 2~(~/ 
~y)2 (curve 2). It is seen that a difference in calculation results is observed only near 

the wall y, < 3. Taking into account that in this region the turbulent exhange coefficient ~T 
is negligibly small in comparison with the dynamic viscosity value ~, while the dissipation 
effect at the mean flow characteristic is mainly realized precisely in its terms, the absence 
of a substantial effect of boundary conditions for g on the calculation results becomes under- 
standable. 

The choice of a boundary condition for the dissipation in the form ~w = 0, but not gw = 
2~(~ee/~y) 2 or (~/~Y)w = 0, is due to the fact that this homogeneous boundary condition 
guarantees highest solution stability for increasing difference steps of the grid. 

Mathematical Model. Taking into account the dissipation equation obtained, the system 
of equations of the suggested turbulent boundary-layer model, together with the closure rela- 
tions for flow of an incompressible liquid, is written in the following form: 

OpU OpV - - - 4  - - - 0 ,  
ox @ 

pU c~U aU a [ OO_~_ ] dp 
Ox + pv - ( ~  + ~T) Oy Oy dx 

Pu- f-x + Pv ay - ay + + ay ] 

Oy - -  Oy !~ + ' "F C 1 ~  - -  C ~  pe~ ] . ' 

(lO) 

with closure relations 
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Fig. 3. Velocity profile distribution in the transition region from laminar to 
turbulent flow ( a = 0.5%): I) Re x = Ius; 2) 2.105; 3) 4.105; 4) u, = 5.51ogy, + 
5.45. 

Fig. 4. Results of calculating the local friction coefficient in the zone of the 
transition flow regime for varying turbulence intensity of the incoming flow: 1) 
a = 0.5%; 2) I; 3) 2%; I) Cf = 0.664/RV-~ex; TI) 0.0263 RexZ/7; III) 0.0592 Rex ~ 

~tT=C.~Rr, C1= 1.65, a ,=  1.3, C~=2[1--0.3exp(--R$)l, 

C~ = 0,095 [--  exp (-- 2.5) + exp (-50125-}- RT // ]' 

f = - - e x p ( - - l O ) + e x p  2 5 §  , 

( 1 1 )  

and boundary conditions 

y = O  Uw =Vw=ew =ew=O,  (12) 
d U  de 0~ 

y - - +  oo - -  O. 
Og Og Oy 

The system of equations (10) was solved numerically by the finite-difference method. 
The solution through the boundary-layer width was performed by a single algorithm directly 
from the wall to the external flow region. The original equations and boundary conditions 
were approximated by a standard implicit finite-difference scheme. In what follows the cal- 
culations were carried out by using approximate numerical methods. To accelerate the calcula- 
tion process and guarantee the required accuracy we introduced a modified coordinate system, 
providing "compression" of the transverse coordinate near the wall. 

The conditions required to start the calculation were assigned by various methods. If 
the solution is realized from the laminar flow regime, then the theoretical profile for the 
Blasius solution for the velocity is assigned. Taking into account that in the laminar flow 
regime there exists fluctuating motion, though R T is small, the initial turbulence intensity 
distribution was given in the form 

e ~ 1.5 32UU~, ( 1 3) 
so as to estimate the effect of the extent of turbulence of the running flow ~ on flow de- 
velopment in the boundary layer. The specific quantity 9 was selected from experimental 
data. The initial dissipation distribution was determined from the well-known Rotta equation 
[]~]. For the case of the turbulent flow regime the initial conditions were assigned by known 
theoretical and experimental relations [13, 14]. 

According to the selected method of solving systems of differential equations of para- 
bolic type, an algorithm was developed and programmed in the FORTRAN language. The width of 
the calculation zone was constant within one problem, and was determined in such a manner 
that at the end of the calculation it exceeded the thickness of the boundary layer by approxi- 
mately five times. Also varied were the number of points across the flow and the grid conden- 
sation parameter in the direct neighborhood of the wall. A satisfactory calculation accuracy 
was achieved for 40 points across the computational grid for the nongradient flow regimes. 
In this case at least 50% of all points were located in the region y, < 50, and three points -- 
within the laminar sublayer. 
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Calculation Results. To estimate the validity of the closure relations and of the dis- 
sipation equations obtained we calculated velocity profiles in the boundary layer for the 
various flow regimes. A solution was found, starting at some point of a planar plate in which 
Re x ~ 104 , while the relative extent of turbulence of the running flow did not exceed 0.5%. 
Under these conditions the boundary layer is laminar and the calculated velocity profile coin- 
cides with the theoretical Blasius profile. Leaving the turbulent flow regime, the calculated 
mean velocity profile is totally rearranged and coincides quite well with a logarithmic dis- 
tribution law (Fig. 3). Curves I-3 correspond to Reynolds numbers Rex = 105 , 2-105 , 4-105 , 
and show how an increase in turbulent shear stress in the transition regime from laminar to 
turbulent flow deforms the mean velocity profile. In this case a laminar sub layer region 
with a linear velocity distribution U, = y, is formed directly near the wall. 

The laminar, transition, and turbulent solution regions of the system of equations of 
the given mathematical model can be simulated by the dependence of the local friction coeffi- 
cient Cf on the Reynolds number Re x (Fig. 4). The dashed curve corresponds to the dependence 
Cf = 0.664/R~e x from the theory of a laminar boundary layer, while the two upper dash--dot 
curves are the theoretical dependences of Cf for the turbulent flow regime, obtained from 
various initial references. The solutions obtained in the present study are shown by solid 
lines. They are in satisfactory agreement with available data. The transition region, ob- 
tained by the calculation, is determined by the extent of turbulence intensity of the incoming 
flow. The transition is shown in Fig. 4 for three different values. The larger the relative 
turbulence intensity, the earlier the transition starts. 

All data calculated by the mathematical boundary-layer model suggested in this study 
agree well with data of theoretical and experimental studies, which confirms the validity 
of the closure relations obtained in the present study, particularly the norrectness of se- 
lecting the homogeneous boundary condition for the dissipation equation. 

NOTATION 

x, coordinate along the flow; y, coordinate across the flow; U, velocity component along 
the x-axis; V, velocity component along the x-axis; p, pressure; u' v' ' ' , , w , or ui, velocity 

3 5 
I 

fluctuation components; i = 1, 2, 3; e=-~- ~<(ul)2> , turbulence intensity; ~= v ~ <(au~/6xj)~> , 
i=l 3 i,/=l 

isotropic part of the total turbulent energy dissipation" D= v-- ~ <(6u~/6xj+6u:/ax~)~> total 
' 2 ~ ~./=! 

dissipation; ~, dynamic viscosity; v, kinematic viscosity; p, density; -><u'v'>, turbulent 
shear stress; U~, velocity at the edge of the boundary layer; Rex, Reynolds number in the 
coordinate x; Tw, shear stress at the streamline surface; U T = ~ ,  dynamic velocity; U, = 
U/UT, dimensionless velocity; y, = yUT/~ , dimensionless coordinate; ~T, turbulent transfer 
coefficient; RT, turbulent Reynolds number; Cf, local friction coefficient; 6, boundary-layer 
thickness~rrection function to the dissipation equation; CI, C2, C~, o~, coefficients; 
s = 100~<(u') >/U~, amount of turbulence intensity of the incoming flow; Re, Reynolds number 
calculated over the tube diameter. 
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DETE~4INATION OF VAPOR BUBBLE BREAKAWAY DIMENSIONS IN HIGH-SPEED FLOWS 

V. A. Gerliga, A. V. Korolev, 
and V. I~ Skalozubov 

UDC 536.423.1:532.517 

A semiempirical relationship is proposed for determining the diameter at which va- 
por bubbles break away from a channel wall in high-speed flows of boiling liquids. 

A large number of experimental and theoretical studies have been published to date con- 
cerning the determination of bubble breakaway diameter in liquid boiling on a heating surface 
under natural convection conditions. For example, a detailed review of the state of this 
problem can be found in [I, 2]. However, experimental studies under conditions of forced 
flow motion [3, 4] have produced qualitative and quantitative divergence from the results of 
the above studies. Thus, under certain conditions the bubble breakaway diameter is an order 
of magnitude or more lower than under corresponding natural convection conditions. The limited 
applicability of the few [3, 5] empirical descriptions is related to the insufficient volume 
of experimental data and the relatively narrow parameter ranges studied. 

In connection with this fact, analytical studies are of definite interest. Unfortunately, 
to date the number of theoretical studies on determination of bubble breakaway diameter has 
been quite limited. The complexity of this problem is related foremost to the large number 
of factors affecting bubble breakaway conditions. Second, analysis of presently available 
studies, for example [6-9] et al., has shown that there is a diversity of opinion as to defi- 
nition of the magnitude, direction, and character of the action of some forces. Moreover, in 
many studies the conditions used to define the moment of bubble breakaway from the wall are 
not well justified. 

In considering the major factors affecting the breakaway of bubbles under conditions of 
both natural and forced convection the majority of authors agree that the main forces sup- 
porting bubbles during the breakaway process are forces produced by liquid relaxation in re- 
sponse to bubble growth and surface tension forces. Thus one can distinguish dynamic (F R 
F o) and quasistatic (F d ~FR) breakaway regimes according to [10]. 

Below we will consider the problem of vapor bubble breakaway in high-speed flows under 
quasistatic breakaway regime conditions at relatively low superheating levels. According to 
the results of [7] the force FR may be neglected at Ja < 10. Low superheat levels define a 
relatively low value of vapor formation center density. Therefore the effect of bubble in- 
teraction on breakaway will not be considered. 

It should be noted that at present there is not a generally accepted definition of the 
value of the force which compensates surface tension Fo under such conditions. Thus, in 
[11, 12] the authors proposed a definition of the surface tension force at the moment of 
breakaway in the form 

Fo = 2~Rc~, (I) 

where R c is the radius of the microfissure which serves as the vapor formation center. The 
quantity R c then corresponds to the radius of the critical vapor bubble nucleus. 
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